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Abstract. Some simplifications of the integralsχ(2n+1), derived by Wuet al(1976Phys. Rev.B 13
316), that contribute to the zero field susceptibility of the 2D square lattice Ising model are reported.
In particular, several alternate expressions for the integrands inχ(2n+1) are determined which greatly
facilitate both the generation of high-temperature series and analytical analysis. One can show that
as series,χ(2n+1) = 22n(s/2)4n(n+1)(1 + O(s)) wheres is the high-temperature variable sinh(2K)
with K the conventional normalized inverse temperature. Analysis of the integrals near symmetry
points of the integrands shows thatχ(2n+1)(s) is singular on the unit circle atsk` = exp(iθk`)
where 2 cos(θk`) = cos(2πk/(2n + 1)) + cos(2π`/(2n + 1)), −n 6 k, ` 6 n. The singularities,
θk` = 0 excepted, are logarithmic branch points of orderε2n(n+1)−1 ln(ε) with ε = 1− s/sk`.
There is numerical evidence from series that these van Hove points, in addition to the known points
at s = ±1 and±i, exhaust the singularities on the unit circle. Barring cancellation from extra
(unobserved) singularities one can conclude that|s| = 1 is a natural boundary for the susceptibility.

1. Introduction

Although an exact formal expression for the susceptibility of the 2D square lattice Ising model
was derived many years ago by Wuet al [1], the relative intractability of the integrals appearing
there has impeded progress in clarifying the nature of the susceptibility as a function of complex
temperature. Detailed information is available at specific points; in particular, Wuet al [1]
exactly calculated the divergent part of the susceptibility at the ferromagnetic singularity.
Aharony and Fisher [2] conjectured that all corrections to the scaling behaviour at this point
could be deduced from the nonlinear scaling fields determined entirely by the known free
energy and magnetization. This has been verified to quite high order by a high-temperature
series analysis by Gartenhaus and McCullough [3]. Amplitudes at the anti-ferromagnetic
point have also been determined [4] and series analysis [5] is consistent with the absence of
non-analytic corrections to the scaling of the susceptibility just as at the ferromagnetic point.
There are also singular points in the complex temperature plane off the real axis; the zero field
free energy is singular ats = v = ±i where in general

s = sinh(2K) = 2v/(1− v2) v = tanh(K) (1)

with K the conventional Ising model coupling constantJ/kBT = βJ while v is the more
commonly used high-temperature expansion variable for this model†. Not unexpectedly,

† Many of the subsequent formulae are simpler when expressed in terms ofs so that I will use it exclusively as
the expansion parameter. It is also more ‘natural’ in that the circle|s| = 1 is approximately the locus of zeros of
the partition function of a finite system and is the locus of all singularities I find in this paper. A good review with
references to earlier work is Fisher [6]. For a discussion of finite system boundary conditions that make the zeros of
the partition function fall exactly on|s| = 1 see also Brascamp and Kunz [6].
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there is evidence [7] that the susceptibility is singular here also; what is of some interest is that
conventional scaling relations do not apply†.

All of the results described above would be consistent with a relatively simple functional
form for the susceptibility and even possibly a closed form solution. However, Guttmann
and Enting [9] following some work by Hanselet al [10] have recently argued that the 2D
Ising susceptibility should be a function with a natural boundary, distinctly different from the
free energy or magnetization which are known in closed form and have singularities only at
s = ±1,±i. They use as evidence the structure of denominators in the generating function
for an anisotropic model in which one coupling, sayKy , is held fixed while the otherKx is
varied. While suggestive, their argument is ultimately based on series and one does not have
the information about high-order terms necessary to make it definitive. In this paper I go much
further in that I explicitly find the contribution to an infinite number of singularities to the
high-temperature susceptibilityχ for the isotropic model on the circle|s| = 1. There is no
numerical evidence for other singularities that might cancel these and barring this unlikely
possibility one can conclude that|s| = 1 is a natural boundary‡.

While the emphasis of the paper is on the singularities ofχ , these could not have been
deduced without also deriving a number of intermediate formulae which represent a formal
extension of the work of Wuet al [1]. For example, equation (6) below can be used to show that
each contributing termχ(2n+1) is positive definite for real 0< s < 1 and this verifies explicitly
that the expression in [1] forχ is of the form of a dispersion series§. As another example,
equation (7) below shows that the essential part of each integrand inχ(2n+1) is a ‘simple’
antisymmetric sum of products. Not only is this suggestive of the fermionic connection [12]
but because all remnants of the exponential generator in the formal expressions forχ(2n+1) in
[1] have now disappeared it becomes conceivable that the final answer could be derived by
another route. Such an alternative might offer insight that I cannot provide; one might also
hope for new derivations simply because those presented here do not qualify as elegant‖.

An important by-product of the intermediate formulae is that it is now much easier to
derive high-temperature series forχ and an extension to 84 terms is reported in appendix A.
Although possibly counter-intuitive, I believe the characterization of the singularities ofχ

actually enhances the utility of the series. The point is that the same analysis that shows
|s| = 1 is very likely a natural boundary also shows that there are no singularities of any
practical consequence, i.e. of large amplitude, near the critical points = 1. On the other hand,
by knowing the location of the dominant complex singularities ofχ , even those very distant,
one can perform a better job of estimating the behaviour near the physical critical point. With
the new information available it becomes almost certainly worth redoing the Gartenhauset al
[3, 5] analyses because, although their results were consistent with the Aharony and Fisher
conjectures [2] regarding the nature of corrections to scaling, there was also some hint of
effects just beyond what one could convincingly include/exclude.

A summary of the main intermediate results and my conclusions regarding the singularity
structure ofχ are given in the following section. Section 2 also contains a guide to the more
explicit details as given in subsequent sections and the appendices.

† These comments only strictly apply at the singularitiess = ±i as approached from smalls. The same singularities
are also present in the magnetization(1− s−4)1/8 which is the analytic continuation from the physical ferromagnetic
phases > 1. Here the exponent scaling relations do appear to be satisfied (see [7, 8]).
‡ Note that all of the singularities of the generating function coefficients atv = tanh(K) = exp(2π ik/(2n + 1)),
−n 6 k 6 n, discussed in [9] lieoutsidethe natural boundary circle|s| = 1.
§ [11] has emphasized the importance of this information.
‖ A simplification might be achieved just be recasting the formulae in this paper into more conventional form. For
example, in equations (4),x = e−γ ands · y = 1 sinh(γ ) whereγ is Onsager’s variable. A referee has suggested that
Onsager’s elliptic substitution, as in the proof of equation (5.5) in [13], may also prove fruitful.
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2. Main results

The main results of the paper are summarized here with only a few comments about how these
arise. Sketches of the proofs and details of the applications will be left for later sections. I
begin with some key formulae from Wuet al [1] (hereafter denoted as W with equations from
this reference denoted by W· ∗ · ∗) and in particular their reduction of the susceptibility into
2n + 1 particle contributions as (W.7.43)

χ = β
∞∑
n=0

χ(2n+1) = β
∞∑
n=0

∞∑
N=−∞

∞∑
M=−∞

〈σ00σMN 〉(2n+1). (2)

Each〈σ00σMN 〉(2n+1) is given in W as a 4n + 2 multiple integral (equations W.2.13–2.17) but
these can be reduced to 2n dimensions by straightforward contour integration methods. Some
details about this reduction as well as the derivation of the key formulae (3), (6), (7), (10)
below are given in section 3. What appears to be the irreducibly coupled expression for each
χ(2n+1) contribution is

χ(2n+1) = (1− s4)1/4s2n

( 2n∏
m=1

∫
dφm
2π

)( 2n+1∏
m=1

ym

)

×H(2n+1){fij }
(

1 +
2n+1∏
m=1

xm

)/(
1−

2n+1∏
m=1

xm

)
(3)

where the constraint
∑2n+1

m=1 φm = 0 mod 2π is understood so that except for theH(2n+1) factor
the integrand is completely symmetric in all 2n+ 1 variables. The terms in the integrand, valid
for smalls and elsewhere by analytic continuation, are

xm = s/{1 + s2 − s · cosφm +
√
((1 + s2 − s · cosφm)

2 − s2)}
ym = 1/

√
((1 + s2 − s · cosφm)

2 − s2)

fij = 1
2(sinφi − sinφj )(1 +xixj )/(1− xixj )

(4)

while the functionsH {fij } can be deduced from the generator equation (W.2.14) and given a
graphical interpretation. The first few are

H(1) = 1 H(3) ≡ f12f23− 1
2(f12f21)

H (5) ≡ f12f23f34f45− 1
2f12f23(f45f54)− 1

4(f12f23f34f41) + 1
8(f12f21)(f34f43)

(5)

where I use here and throughout the paper≡ to denote ‘is equivalent to, for the purposes
of integration in equation (3)’. Because of the symmetric form of the rest of the integrand
different labellings of thefij in (5) are possible. Equation (3) forχ(1) evaluates directly
without integration toχ(1) = (1− s4)1/4/(1− s)2 while for n > 0 equations (3)–(5) can
form the basis for the efficient generation of high temperature series by direct expansion and
numerical integration. It was in fact essentially these equations that formed the basis for the
series reported at Cargese [14]. However, as shown below,χ(7) contributes at orders48 so
that the higher-order terms in the published longer series [3, 15]† need to be corrected by the
results below.

Since all terms in the integrand in (3) are of order unity the naive expectation is thatχ(2n+1)

is of orders2n, a bound already remarked on in W as very poor. Twenty orders were observed
to cancel inχ(5) yet there is nothing in the structure of the integrand as written above to suggest

† The term 90466431959611708308v49 should replace a misprint in the series on p 9 in[15].
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why this might happen. To verify this cancellation one needs alternate representations for the
H functions. A very useful reduction for analytical work is

H(2n+1) ≡ (G(2n+1))2/(2n + 1)! ≡
( n∏
m=1

f2m−1,2m

)
G(2n+1)/(2nn!) (6)

whereG(2n+1) is the totally anti-symmetric sum of products

G(2n+1) =
∑

p

δpP

( n∏
m=1

f2m−1,2m

)
/(2nn!). (7)

The permutation operatorP is to be understood to generate all possible(2n + 1)! terms using
2n+1 labels. A normalization 2nn! is included in (6) and (7) to correct for the redundancy that
arises because thefij are anti-symmetric and the ordering of thefij factors does not matter.
Thus there are only(2n + 1)!! distinct terms in the sum (7) each with weight±1 as given by
the parity factorδp depending on whether the permutation is even or odd†. It is this reduction
to the anti-symmetric form that suggests why there is so much cancellation in the evaluation
of the integrals. The details of the additional analysis to prove the cancellation observed in the
high-temperature expansions are given in section 4. Here I only quote the final result for the
susceptibility from equation (3) which is

χ(2n+1) = s2n(s/2)2n(2n+1)(1 + O(s)). (8)

Another reduction verified in section 4 that is useful for extended numerical work is

H(3) ≡ f12(f23 + 1
2f12) H (5) ≡ f12(f23f14 + 1

2f12f34)(f45 + 1
4f34) (9)

and for the general term the product

H(2n+1) ≡ f12

( n−1∏
m=1

(
f2m,2m+1f2m−1,2m+2 +

1

2m
f2m−1,2mf2m+1,2m+2

))
×
(
f2n,2n+1 +

1

2n
f2n−1,2n

)
. (10)

Furthermore, as part of the proof of the cancellation leading to equation (8) one finds that the
fij to be used in (10) need not be restricted to the form given in (4). Instead one can use the
equivalent

fij ≡ (sinφi − sinφj )(xixj /(1− xixj )− s2/4) (11)

which is O(s3). Since 2n factors offij appear in the integrand forχ(2n+1) in equation (3), use
of thefij from equation (11) gives as a bound forχ(2n+1) orders8n and while much better than
the naives2n is still nowhere near the actual result in equation (8) except forn = 1. The use of
these representations and the further manipulations necessary to derive high-temperature series
efficiently are described in appendix A where also series to orders84 are given. Longer series
for χ(3) andχ(5) have been useful in confirming some of the analytical work described here.
In connection with this I discuss in appendix B a series analysis method that is particularly
well suited to long series.

For a determination of the singularities ofχ(2n+1) I have guessed that at least a subset of
them should arise from the symmetry points of the integrand in analogy with the van Hove
singularities seen in periodic systems such as typically studied in solid state physics. The most
obvious symmetry point is that at which allφm are equal and equalφ(k) = 2πk/(2n + 1)

† The fact that the permutation sum in equation (7) is over 2n+1 labels means thatG(2n+1) is a sum of 2n+1 Pfaffians
obtained by cyclically permuting indices starting from 1, 2, . . . ,2n with index 2n + 1 initially missing. A discussion
of Pfaffians can be found in [16].
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with −n 6 k 6 n. Furthermore, I require a potential divergence in the integrand in
equation (3) and an obvious point for this criterion is the vanishing of the denominator factor
1−∏m xm = 1− x2n+1 with all xm = x(φm) = x equal. This combinationφm = φ(k) and
x = exp(iφ(`)) requiress = sk` where from equation (4) forxm(s) one obtains

sk` = exp(iθk`) 2 cos(θk`) = cos(φ(k)) + cos(φ(`))
φ(k) = 2πk/(2n + 1) φ(`) = 2π`/(2n + 1) − n 6 k, ` 6 n. (12)

The details of the expansion of the integrand in equation (3) about the symmetry points
and the determination of the leading singularity structure ofχ(2n+1) in the neighbourhood of
sk` are given in section 5. The general result, from equation (42), is that the singular part of
χ(2n+1) is

χ
(2n+1)
k` = O(ε2n(n+1)−1 ln(ε)) ε = 1− s/sk` (13)

with the ferromagnetic pointk = ` = 0 excepted. With all amplitude information included,

χ
(2n+1)
k` /(1− s4

k`)
1/4 ' (i/sk`)

( 2n∏
m=1

(m!/2m)

)/
(πn0(2n(n + 1))

√
(2n + 1))

×(ε(2n + 1) sin(θk`))
2n(n+1)−1 ln ε

×[(sin2(φ(`)) cos(φ(k)) + sin2(φ(k)) cos(φ(`)))2n(n+1)]−1. (14)

There is an ambiguity in equations (12)–(14) with regard to the sign ofθk` but this is to be
resolved simply by symmetrizing the contributions betweenθk` and−θk`. That is, of all the
solutions related by the|k| ↔ |`| symmetries, exactly12 are to be identified with 0< θk` < π

and 1
2 with −π < θk` < 0 so that the totalχ(2n+1) is real.
The singularities as given by equations (12)–(14) imply a definite asymptotic contribution

to the series expansion of eachχ(2n+1)/(1− s4)1/4 =∑K
(2n+1)
N sN . For the casen = 1 these

contributions, obtained most simply by expandingε3 ln(ε) for eachk, ` pair, combine to give
in the limitN →∞ the coefficients

1K
(3)
N = N−4(4/π)(8 sin((N + 1)2π/3) + 5

√
5 sin((N + 1) arccos( 1

4))) (15)

and while much smaller than the contributions from singularities ats = ±1,±i, they are easily
observed in the series analysis described in appendix B. Some of the corresponding1K

(5)
N

contributions are also observed. There is no evidence in either series for additional|s| = 1
singularities. Thus the infinite number of singularities described in this paper are very unlikely
to be cancelled and the conclusion that the circle|s| = 1 is a natural boundary forχ becomes
very compelling.

3. Alternate integrand representations

Any particular term generated by (W.2.14) for〈σ00σMN 〉(2n+1) is the product of combinatorial
factors to be discussed below, a factor(1− s4)1/4s2n, 2n+ 1 double phase integrals of the form∫

dφ

2π

∫
dψ

2π
(1 + s2 − s(cosφ + cosψ))−1 exp(−iMφ − iNψ) (16)

and a further 2n integrand factors
1
2(sinφ − sinφ′)(1 + exp(−iψ − iψ ′))/(1− exp(−iψ − iψ ′)). (17)

Here I have usedφ andψ in place of the odd and even phases of W. The phasesφ′ andψ ′ are
integration variables associated with a factor not explicitly shown but which is identical to (16)
except for the replacementsφ→ φ′ andψ → ψ ′; conversely there may be other occurrences
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of exp(−iφ) andz = exp(−iψ) in factors like (17) not explicitly shown. It is to be understood
thatN > 0 and the phasesψ have an infinitesimal negative imaginary part so that none of the
factors (17) are singular and theN →∞ limit of exp(−iNψ) exists. The integral

∫
dψ can

be done by residue calculus with the zero of the denominator in (16) being the only singularity
to consider; one gets for smalls∫

dψ

2π
(1 + s2 − s(cosφ + cosψ))−1 = y = 1/

√
((1 + s2 − s · cosφ)2 − s2) (18)

and elsewhere the replacement

z = exp(−iψ)→ x = s/{1 + s2 − s · cosφ +
√
((1 + s2 − s · cosφ)2 − s2)}. (19)

Similar replacements will be generated after integration overψ ′. The result of these integrations
is that the product of integrals (16) becomes∏(∫

dφ

2π
yxN exp(−iMφ)

)
(20)

and the dependence of〈σ00σMN 〉(2n+1) on the lattice siteM,N is contained entirely in (20).
The lattice sum over the integersM,N can therefore be done on this expression alone; thexN

product in (20) converts to†(
1 +

2n+1∏
m=1

xm

)/(
1−

2n+1∏
m=1

xm

)
(21)

in χ(2n+1) and appears as the last factor in equation (3). The exp(−iMφ) product in
(20) is replaced by 2πδ(2πk − 6φm), k = 0,±1,±2, . . . , and eliminates one of the
2n + 1 remainingφ integrations inχ(2n+1). Finally, the integrand factor (17) reduces to
1
2(sinφ − sinφ′)(1 + x · x ′)/(1 − x · x ′) which is one of the 2nfij factors that contribute
to theH {f } function in (3). Included in the definition ofH {f } are the combinatorial factors
that depend on the specific structure of eachfij product.

An fij can be viewed as a propagator from sitei to j and the products of propagators will
form either closed loops of even length or a combination of closed loops and an open line of
even length‡. The loops originate in theF (2n)>MN and the line inx(2k−1)

>MN in (W.2.14). Thus the
‘graphical’ rule to be observed is that with every loop of length` is to be associated a weight
of−1/`where` has its origins in the term 2n in the prefactor to the integralF (2n)>MN in (W.2.16)
and the−1 comes from the negative in the exponential in (W.2.14). From the exponential one
also concludes that symmetry factors 1/m! must appear with each occurrence of anm-fold
multiplicity in loops of the same length.

That the alternate expression (10) given in the introduction generates this same graphical
expansion can be seen as follows. First, write for the first term in every bracket in (10)α and
for the second termβ so that schematically (10) is(α + β)n. Then note that in the expansion
of the product (10), sequences such asααβαααββ . . . are generated where it is understood
that the order has been maintained. Reading from left to right, every occurrence of a factorβ

marks the termination of an open line and its conversion into a loop. The length of the loop is
` where`/2− 1 is the number of precedingα factors. The anti-symmetry of eachfij factor
can be used to show a negative sign is generated with each loop. To verify the correct weight
one must note the position of each factorβ in the sequence; aβ from the(`/2)th factor in
(10) has weight 1/`. Thus if, for example, successive loops are of length`1, `2, `3, . . . the

† To generalize to a second moment calculation we need only include a factorM2 +N2 in (20). By symmetry this is
equivalent to 2N2 and leads to the replacement of (21) by 4

∏
x(1 +

∏
x)/(1−∏ x)3,

∏
x =∏2n+1

m=1 xm.
‡ The distinction between a line and loop, each a product of 2f̀ij factors and by definition of length 2`, is that the
line connects 2̀+ 1 distinct sites while the loop connects 2` sites only.
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β positions will determine the weight as 1/`1/(`1 + `2)/(`1 + `2 + `3)/ . . . and to this must
be added the weights of all sequences which differ only by a distinct permutation of the`i as
these contribute to the same line/loop structure. If the`i are all different the correct weight
follows immediately from the identify

∑
p 1/`1/(`1 + `2)/(`1 + `2 + `3)/ . . . = 1/(

∏
i `i).

Otherwise the restriction on the permutation sum will automatically generate the correct 1/m!
corrections for eachm-fold multiplicity.

A quick sum rule check of the weights exclusive of sign can be obtained by noting that
the generator for the weights defined by (W.2.14)–(W.2.16) is

gw = (1 +f 2 + f 4 + · · ·) exp(f 2/2 +f 4/4 +f 6/6 + · · ·) (22)

where the exponential embodies the loop rules including their 1/`weight while the first factor
ensures that a line appears only once with weight unity. The generator (22) has the expansion

gw = (1− f 2)−3/2 =
∑

f 2n(2n + 1)!!/(2nn!) (23)

and thef 2n term in series (23) is exactly that given by (10), namely
∏n
m=1 f

2(1 + 1/2m).
I know of no way to show the consistency of the key representations (6), (7) with the

graphical rules above except by a detailed listing of cases. On the other hand, simple
permutation and relabelling shows the equivalence of the twoG forms in (6) so it is only
necessary to use the simpler second, linear inG, form of (6) to verify correctness, i.e.

H(2n+1) ?≡
( n∏
m=1

f2m−1,2m

)∑
p

δpP

( n∏
m=1

g2m−1,2m

)/
(2nn!)2. (24)

The gij in (24) are identical to thefij ; I introduce the notational difference here only
to distinguish, for the following argument, those propagators(g) that come from theG
factor as opposed to those(f ) from the fixed prefactor. The sum in (24) as in (7) is
over all permutations; therefore the total weight of all terms without regard to sign is
(2n + 1)!/(2nn!)2 = (2n + 1)!!/(2nn!) and this is just the sum rule weight deduced from
the generator (23). Also, in any of the products of 2n fij or gij propagators in (24) a site label
k can appear at most twice, once in anfik and then once ingjk. This implies that only loops
or a single line together with loops can be generated. All loops are of even length; iff̀ij are
involved there must be exactlỳgij to join the first set into a loop. It is fairly straightforward
to count the possible arrangements and show each particular loop structure comes with the
correct weight, exclusive of sign.

To show the correctness of all sign factors it suffices to verify one particular configuration
and then the relative sign between all pairs of configurations obtained by a transposition of
neighbouring site labels,i ↔ i + 1, i = 1, . . . ,2n. That is, these transpositions, if carried
out enough times can generate any configuration from a given one and if allrelativesigns are
correct then all signs are correct. The unpermuted configuration in (24) in combination with
all 2nn! redundant permutations serves as a starting point; it is 1/(2nn!)

∏
(f2i−1,2ig2i−1,2i ) =

(−1)n/(2nn!)
∏
(f2i−1,2ig2i,2i−1)which has the correct sign and weight forn loops of length 2.

To illustrate the sign proof I consider below two examples; the complete proof simply
requires a listing of all cases which is not instructive. Consider first the case that a transposition
occurs in a connected structure. To be specific, supposef12 and f34 are connected by
propagators and that we wish to compare with those configurations inG in which 2 and 3
have been transposed. Take as starting configurationCstart = f12(g23 + g2kfkmgm3 + · · ·)f34

with the central factor written as a sum to allow for different possible connections to be treated
in a single analysis. Now note that terms inG that differ by nothing more than a 2↔ 3
transposition also differ by a minus sign becauseG is anti-symmetric. It is these terms that
constitute our comparison configurationCcomp= −f12(g32+g3kfkmgm2+· · ·)f34. The explicit
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anti-symmetry of thef, g factors allows us to rewrite this asf12(g23+g2mfmkgk3 + · · ·)f34 and
the sign change observed in the first few terms is common to all terms because the number of
propagators in each product in the brackets is odd. The new configuration cannot yet be directly
compared with the original because the fixedfij of equation (24) have changed. However, all
the site labels are dummy variables of integration and so for purposes ofequivalencewe can
relabelk ↔ m and other labels as necessary to getCcomp ≡ f12(g23 + g2kfkmgm3 + · · ·)f34

which is the originalCstart.
The above example is to be contrasted with the case that transposition occurs between two

disconnected structures. At least one of the structures must be a loop and we can takeCstart=
(f12g2j )(f34g43+f34g4kfkmgm3 + · · ·)where the second factor is the loop and whether the first
factor(f12g2j ) is part of a loop or line need not be specified. Again there will be a comparison
configuration from terms inG that differ from the above by a 2↔ 3 transposition. This
configuration isCcomp= −(f12g3j )(f34g42+f34g4kfkmgm2+· · ·)where the minus comes from
the anti-symmetry ofG as before. The key distinction with the previous case is that the number
of propagators in each product term in the second bracket is even so that when we rewrite by
explicit use of thef, g anti-symmetry we getCcomp= −f12(g24f43 + g2mfmkgk4f43 + · · ·)g3j

with terms conveniently rearranged to more clearly display the propagation sequence. The
relabelling necessary to get thefij back to original form is 3↔ 4, k ↔ m, . . . and with
this relabelling one findsCcomp= −f12(g23f34 + g2kfkmgm3f34 + · · ·)g4j . Besides the minus
relative toCstart one should note the new structure is no longer disconnected and so involves a
reduction of loop number by unity. Analysis of other cases shows the factor of(−1)loop number

is general and equation (24) is verified.

4. High-temperature limits

The reduction ofG(2n+1) in equation (7) that is useful for discussing both high-temperature
series and the singularity structure ofχ(2n+1) starts with the observation that the anti-symmetric
product satisfies a cumulant-like property, namely that any part offij that depends on one of
the variablesφi independently of the otherφj can be dropped. Specifically,

fij ≡ fij + f̂i − f̂j i < j (25)

for any functionf̂ . This result is obvious forG(3) = f12− f13 + f23 and can be verified by
induction in general. As an application, thefij of equation (4) is equivalent to

fij ≡ (sinφi − sinφj )xixj /(1− xixj ). (26)

Since for smalls, xi = s/2 + s2/2 cosφi + · · ·, the cumulant equivalentfij as written in (26)
is O(s2). However, a further subtraction of the leadings2/4(sinφi − sinφj ) term reducesfij
to O(s3) and this is what appears in equation (11).

A surprising feature of the cumulant equivalentfij in (26) is that the last factor has the
expansion

xixj /(1− xixj ) =
∞∑
m=1

(s/2)m+1Bm(s)(2
m−1(cosm φi − cosm φj )/(cosφi − cosφj )) (27)

which was discovered withMaple† but can easily be proved by explicitly showing the cross
derivative∂2/∂φi∂φj (cosφi−cosφj )xixj /(1−xixj ) vanishes. The functionBm(s), obtained
by comparing series in the limitφi → φj , is the hypergeometric function

Bm = F
(
m + 1

2
,
m + 2

2
; 2; s2/(1 + s2)2

)/
(1 + s2)m+1. (28)

† Maple V software available from Waterloo Maple Software, 160 Columbia Street West, Waterloo, Ontario, Canada
N2L 3L3.
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The utility of the form (27) is that it enables us to derive a Laurent expansion forfij in
zi = exp(iφi) andzj = exp(iφj ), namely

fij ≡ −i
∞∑
p=1

∞∑
q=1

(s/2)p+q+1(z
p

i /z
q

j − zpj /zqi )Ap+q i < j

Am = 4F3

(
m + 1

2
,
m + 2

2
,
m + 2

2
,
m + 3

2
;m + 1, m + 2, 2; 4s2/(1 + s2)2

)/
(1 + s2)m+1

(29)

and the fact that the coefficient ofs2k in the series expansion ofAm is a polynomial inm of
degree 2k will be of importance below†. When the explicitfij from (29) is substituted into
theG(2n+1) sum in (7), several simplifications can be made. First, the restrictioni < j on
fij in (29), which is there to uniquely define the sign, can be dropped in theG sum since the
correct sign is now obtained by the parity factorδp. Second, since the term−zpj /zqi in the sum
(29) will give the same contribution aszpi /z

q

j , it can be eliminated together with the 2n in the
normalization in (7). The result

G(2n+1) = (−i)n
∑
{p,q}

∑
p

δpP
( s

2

)∑pi+
∑
qi+n

( n∏
m=1

Apm+qm(z2m−1)
pm/(z2m)

qm

)/
n! (30)

can be further reduced. Terms in the exponent set{p, q} sum that maintain the pair sums
pi + qi but differ in ordering give the same contribution since a standard ordering can be
achieved by even permutations involving only pairsz2i−1, z2i . Thus one can impose the
orderingp1 < p2 < · · · < pn and simultaneously drop then! in (30). Then! terms that
correspond to differentqi orderings involve products of differentAm amplitudes but these are
the expansion of a determinant with theAm as elements. The final result is

G(2n+1) = (−i)n
′′∑
{p,q}

( s
2

)∑pi+
∑
qi+n

det|A{p, q}|
∑

p

δpP

( n∏
m=1

(z2m−1)
pm/(z2m)

qm

)
(31)

where the double prime on the{p, q} set indicates the restriction to the orderingp1 < p2 <

· · · < pn andq1 < q2 < · · · < qn. Det|A| is the determinant of ann × n matrix with the
Aij element equal to theAm of equation (29) withm = pi + qj . Whether this result (31) for
G(2n+1) is useful for numerical work in general is not clear but it does enable us to calculate
easily the leading (few) terms in the series expansion ofχ(2n+1).

Because of the way the elementsAij of the matrix are constructed from theAm above,
different rows and columns, if restricted to some finite order ins, may be linearly dependent
and in general we can expect a considerable amount of cancellation in the evaluation of the
determinant. The terms that will be the last to cancel in det|A|will be those with the strongest
dependence on position within the matrix and for a calculation of the leadings dependence it
is sufficient to keep only the dominantm dependence inAm; this, from equation (29) is

Am ≈
∞∑
k=0

(ms/2)2k/(k!(k + 1)!) (32)

and leads to

det|A{p, q}| = (s/2)n(n−1)

( ∏
16i<j6n

(pj − pi)(qi − qj )/(j − i)2
)
(1 + O(s)). (33)

The conclusion from (33) is that for fixedn all determinants are of the same order ins and
differ only in the numerical prefactor. To obtain the minimum power ofs inG(2n+1) in (31) we

† Note that (29) is only equivalent to (26) with the substitution of (27), (28). Terms withp = 0 orq = 0 have been
dropped in (29).
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then simply need to set all adjacentpi+1 − pi = 1 and similarly for theqi . With this choice
(−i·s/2)n(n−1)(1+O(s))becomes the minimal determinant in (33). The corresponding minimal
G(2n+1) is

G(2n+1)(min) = (−i)n
2
( s

2

)n(2n+1)∑
p

δpP

( n∏
m=1

(z2m−1/z2m)
m

)
(1 + O(s)) (34)

and the minimalχ(2n+1) from equations (3), (6) is the simplified integral

χ(2n+1)(min) = s2n

( 2n∏
m=1

∫
dφm
2π

)
(G(2n+1)(min))2/(2n + 1)!(1 + O(s)). (35)

We now make the trivial observation that
∫

dφiz
p

i = 2πδp0 so that to get a nonvanishing result
in a product of twoG(2n+1)(min), every term in the second must be paired with that specific
term in the first that is obtained by the inversion of allz2m−1/z2m ratios†. But this is just a
permutation of all pairs 2m − 1↔ 2m which has parity(−1)n and cancels the(−1)n

2
from

(34). All (2n + 1)! terms in oneG(2n+1)(min) will pair and give the identical contribution; the
final result is that given in equation (8).

5. Singularities

From the definition ofxm(s) in equations (4) one can show|s| < 1 implies|xm| < 1 if the phase
φm is real. This in turn implies thatχ(2n+1) as given by (3) is analytic for|s| < 1. Even on the
boundary|s| = 1,χ(2n+1) will not be singular wherever it is possible to deform the integration
contours into the complex plane to avoid the integrand points where denominator factors such
as 1−∏2n+1

m=1 xm vanish for realφm. Such deformation is not possible at the stationary points
of the integrand and of these the symmetry pointsφm = φ(k) andxm = exp(iφ(`)) for all
m = 1, 2, . . . ,2n+1 are obvious candidates. Hereφ(k), φ(`) and the associated singular points
s = sk` are as given in equations (12). Note that cos(θk`) is invariant under the interchange
|k| ↔ |`| which is related to the horizontal↔ vertical bond symmetry of the original Ising
lattice. This is because thexm variable is the memory of the phase variable that was integrated
out in deriving equation (3) from the integralχ(2n+1) in W and (12) simply recovers the explicit
symmetry lost in intermediate steps‡.

In connection with the breakdown of explicit symmetry in intermediate steps one should
also note that in equations (4), (19), ifs = |s| exp(iθ) with |s| < 1 and 0< θ < π then
the variablex satisfies Im(x) > 0. This in turn implies 0< θk` < π if 0 < ` 6 n and
−π < θk` < 0 if −n 6 ` < 0. However, the equation (19) identification exp(−iψ) → x

is based on an earlier arbitrary restrictionN > 0 and Im(ψ) < 0. ChoosingN 6 0 and
Im(ψ) > 0 would leave equation (3) unchanged but yield exp(iψ)→ x; thus the sign ofθk`
depends on the prescription adopted. The only definitive conclusion is that for any specific
choice there will be an equal number of positive and negativeθk` in total as one scans through
±k,±` and this is the basis for the remarks following equations (12)–(14).

One can determine the singular part ofχ(2n+1) in the vicinity of the pointssk`, 0< ` 6 n
as follows§. First, write

s = sk`(1− ε) = exp(iθk`)(1− ε) (36)

† This is not true in general. The phase constraint
∏2n+1
m=1 zm = 1 allows for the possibility of extrazm appearing so

that thezi from the twoG(2n+1) factors alone need not cancel. This constraint will be crucial for getting correctly the
first odd order contribution toχ(2n+1) but is irrelevant here.
‡ For the invariance ofχ(2n+1) underφ, ψ interchange see the remarks following (W.4.87) ([1]).
§ The singular pointss = ±1,±i require a different treatment and will not be discussed (the ferromagnetic point
s = 1 has of course been analysed in great detail in W). The contributions for−n 6 ` < 0 follow by complex
conjugation sinceχ is a real function. The casè= 0 can be avoided by using the|k| ↔ |`| symmetry.
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with 0 < θk` < π as discussed above and for now takeε as infinitesimal real and positive.
Thenxm is unambiguously in the upper half complex plane and to first order is

xm ' exp(iφ(`) − (2ε sin(θk`) + iδm sin(φ(k)) + iδ2
mAk`)/ sin(φ(`)))

Ak` = (cos(φ(k)) + sin2(φ(k)) cos(φ(`))/ sin2(φ(`))/2
(37)

where the deviationδm = φm − φ(k) is appropriately considered O(
√
ε) for power counting

purposes. Because of the constraint
∑
δm = 0, the product

∏2n+1
m=1 xm simplifies and results in

the divergent factor in the integrand forχ(2n+1) becoming the single variable Lorentzian

1

/(
1−

2n+1∏
m=1

xm

)
' sin(φ(`))/(2ε(2n + 1) sin(θk`) + iδ2Ak`) (38)

with δ2 = ∑2n+1
m=1 δ

2
m defined as the ‘radial’ deviation from the singularity. The only other

important variation in the integrand in equation (3) is in theH factor because it vanishes at the
symmetry point. Indeed, from equations (6), (7) one can conclude that to leading order one
can setε = 0 and

H(2n+1){fij } ' (−1)nB(2n+1)
k`

∏
16i<j62n+1

(δi − δj )2 (39)

whereB(2n+1)
k` is a constant I will determine below. One can elsewhere also setδ to zero; for

example,sym ' i/ sin(φ(`)). The leading singular contribution to the susceptibility near the
point sk` is now given by the simpler

χ
(2n+1)
k` /(1− s4

k`)
1/4 ' (2i/sk`)B

(2n+1)
k` sin−2n(φ(`))

×
( 2n∏
m=1

∫
dδm
2π

)( 2n+1∏
i<j

(δi − δj )2
)/

(2ε(2n + 1) sin(θk`) + iδ2Ak`) (40)

and the integral in (40) can be reduced by using the result† that for any function of the radial
coordinate only,f (δ2),( 2n∏

m=1

∫
dδm
2π

)( 2n+1∏
i<j

(δi − δj )2
)
f (δ2) = K2n+1

∫
δ>0

dδ δ4n(n+1)−1f (δ2)

K2n+1 = 4/(πn0(2n(n + 1))
√
(2n + 1))

2n+1∏
m=1

(m!/2m).

(41)

The integral (40) combined with (41) is of course highly divergent at largeδ but this is not
singular asε → 0. For the correct singular part one need only keep the nonpolynomial (inε)
part of the partial fraction reduction of the ratioδ4n(n+1)−1/(2ε(2n+1) sin(θk`)+ iδ2Ak`)which
is δ/(2ε(2n+ 1) sin(θk`)+ iδ2Ak`)multiplied by the factor(2iε(2n+ 1) sin(θk`)/Ak`)2n(n+1)−1.
The result of the remaining elementary integral for the singular contribution is then

χ
(2n+1)
k` /(1− s4

k`)
1/4 ' (i/sk`)K2n+1B

(2n+1)
k` sin−2n(φ(`))

×(2ε(2n + 1) sin(θk`)/Ak`)
2n(n+1)−1 ln(ε)/Ak`. (42)

† The functional form follows by power counting; the constantK2n+1 can then be determined by choosing
f (δ2) = exp(−δ2). However, the following tricks still appear to be essential. First, one can make the implicit
constraint explicit by supplying the redundant factor

∫
dδ2n+1δ(

∑
δm); second, one can show that a(2n + 1)-

dimensional integral withoutδ(
∑
δm) in the integrand is larger than one withδ(

∑
δm) by the factor

√
(π(2n + 1)).

This is done by transforming to Jacobi coordinates and performing the ‘centre of mass’ integrals explicitly while
leaving the relative coordinate integrals unevaluated. The final step (this is apparently a very old problem. See [17]
for the solution in the context of random matrices: the authors give references dating to 1883.) involves recognizing
that the unconstrained(2n + 1)-dimensional integral is an integral over the square of a Vandermonde determinant
which can be converted to a Slater determinant in an orthogonal Hermite polynomial basis. The integral is then a
textbook exercise in wavefunction normalization in quantum mechanics.
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This completes the proof of the order of the singularity asε2n(n+1)−1 ln(ε) and I turn now to
the explicit evaluation of the constantB(2n+1)

k` .
As an intermediate step to determiningB(2n+1)

k` it is necessary to determine the expansion of
fij given in equations (4). One can define, in addition to the aboveδm = δ(k)m = φm−φ(k), the
deviationδ(`)m wherexm = exp(iφ(`) + iδ(`)m ). Sinceε = 0, these deviations are symmetrically
related by the constraint cos(φ(k) + δ(k)m )+ cos(φ(`) + δ(`)m ) = cos(φ(k))+ cos(φ(`)) = 2 cos(θk`)
and one finds thatfij = (i/2)(sin(φ(k) + δ(k)i )− sin(φ(k) + δ(k)j )) cot(φ(`) + (δ(`)i + δ(`)j )/2). A
direct expansion offij in theδ is possible but it is hard to see in this case how the very simple
final result forB(2n+1)

k` obtains. A simpler algebraic expansion can be obtained by using as
variablest = tan(δ/2) in which case the constraint and the cumulant equivalent†fij become

t (k)σ (k)/(1 + t (k)2) + t (`)σ (`)/(1 + t (`)2) = 0 σ = sin(φ) + t · cos(φ)

fij ≡ i · sin(φ(`))(t (k)j − t (k)i )t
(`)
i t

(`)
j /(σ

(k)
i σ

(k)
j (σ

(`)
i σ

(`)
j − t (`)i t (`)j )).

(43)

It is not apparent in (43) but can be shown by somewhat involved trigonometric manipulation
thatfij is anti-symmetric ink, `, i.e. fij (k, `) = −fij (`, k). Expansion in eithert (k) or t (`)

breaks this symmetry and it is better to use as expansion variableτ where

τ 2 = −t (k)t (`)/(σ (k)σ (`)) (44)

and where the sign ofτ is made definite by 2τ ' δ(k)/ sin(φ(`)) ' −δ(`)/ sin(φ(k)) for
small δ. Other symmetric variables are obviously possible but this particular choice has
been motivated by the form offij in equation (43). Specifically, with the definition (44),
fij ≡ i(τj − τi)τiτj + terms∝ τpi τ qj with p, q > 2, which is to say that all linear termsτiτ

q

j

andτj τ
p

i are eliminated forp, q > 2. What this argument does not predict is the remarkably
simple general expansion

fij ≡ iτiτj /(1− τiτj )
{
(τj − τi) + τiτj /(1 + τiτj )

×
∞∑
n=0

(τ 2n+1
j − τ 2n+1

i )(Pn+1(− cos(2θk`))− Pn−1(− cos(2θk`)))/(2n + 1)

}
= i

∞∑
p=1

∞∑
q=1

b
(p,q)

k` τ
p

i τ
q

j (45)

where thePn are Legendre polynomials with the conventionP−1 = P0 = 1 and the last line
defines the coefficient arrayb(p,q)k` to be used in the discussion below. Just as in the case of
the expansion (27), equation (45) was discovered withMaple and can be proved along similar
lines. Multiplying both equations (43) and (45) forfij by 1− 1/(τ 2

i τ
2
j ) results in difference

functionsfi − fj and thus equation (45) is proved if the single variable identity‡
∞∑
n=0

τ 2n+1(Pn+1(− cos(2θk`))− Pn−1(− cos(2θk`)))/(2n + 1)

?= 1/τ − τ + sin(φ(k))/t(`) − (sin(φ(`))/ sin(φ(k)))(cos(φ(k))− t (k)/σ (k)) (46)

is true. Now the constraint equations in (43) combined with the definition (44) lead to a
quadratic equation fort (k)/σ (k) = −τ 2σ (`)/t (`) whose solution substituted into the right-hand
side (RHS) of (46) gives

RHS(46) = −τ + (1/τ)(1−√(1 + 2τ 2 cos(2θk`) + τ 4)). (47)

† As discussed in section 3 (cf equation (25)), terms of the formf (ti ) or f (tj ) will not contribute tofij and can be
dropped.
‡ The equality of the differences only defines the functions to within an additive constant. An explicit low-order
calculation has been used to determine the constant which is included in equation (46).
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Hence the result (45) is proved.
To complete the discussion of the derivation ofB(2n+1)

k` I note that althoughG(2n+1) in
equation (7) is given as a sum of products offij , it is also an anti-symmetric function and in
the neighbourhood of the symmetry point where allτi = 0, its lowest order nonvanishing term
must be proportional to the product

∏
i<j (τi − τj ). For the coefficient of proportionality it is

only necessary to compare, for example, the specific termτ 2n
1 τ

2n−1
2 · · · τ 2

2n−1τ2n with the result

G(2n+1) ' in
{∑

P

δPP

( n∏
m=1

b
(2m,2m−1)
k`

)/
(2nn!)

}( 2n+1∏
i<j

(τi − τj )
)

(48)

whereP is the permutation operator on the indices 16 p, q 6 2n so that the{ } expression in
equation (48) is a Pfaffian [16]. Finally, fromH(2n+1) = (G(2n+1))2/(2n + 1)! in equation (6)
one obtains

(−1)nH (2n+1)
k` (2n + 1)! '

{∑
P

δPP

( n∏
m=1

b
(2m,2m−1)
k`

)/
(2nn!)

}2 2n+1∏
i<j

(τi − τj )2

' det|b(i,j)k` |
2n+1∏
i<j

(τi − τj )2 (49)

with the last line based on the general connection between Pfaffians and determinants [16]
and where it is to be understood thatb(i,j)k` is restricted to a truncated 2n× 2n array. From the
specific form of the expansion offij in equation (45) it follows det|b(i,j)k` | = 1 for all n.

Finally, because we are working to leading order only, we can replace 2τ → δ(k)/ sin(φ(`))
in equation (49) and make the identification for the required constant in (39) as

B
(2n+1)
k` (2n + 1)! = 1/(2 sin(φ(`)))2n(2n+1). (50)

The combined result of all the calculations above is the general formula quoted in the
introduction equation (14) which has the expected invariance under|k| ↔ |`| interchange.
Additional evidence for the correctness of this result rests with the numerical series analysis
presented in appendix B.
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Appendix A. Numerical generation of series

A key observation from the explicit formulae (4) forx(φ) andy(φ) and (11) forfij is that in a
high-temperature expansion of the integrand forχ(2n+1) in equation (3), no Fourier component
more rapidly varying than sin((N − 4n)φ) can occur at ordersN . This means that if the
expansion in powers ofs is generated as a numerical series, the exact coefficient ofsN can be
recovered by a numerical integration overφ using at mostN − 4n uniformly spaced points
on the interval−π 6 φ 6 π . In fact this is a substantial overestimate. I find empirically that
integration onN − 2(n + 1)(2n− 1) uniformly spaced points will give exact results to order
sN (with N even).

The high-temperature expansion is completely straightforward. Expandx(φ) andy(φ)
and store as series ins at the pointsφ(k) = πk/M, k = −M, −M + 1, . . . ,M, where
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M = N/2− (n + 1)(2n − 1). Sinceχ(2n+1) is orders8n if one uses the equivalentfij from
equation (11), each series can be restricted to a length ofN + 1− 8n terms. Standard routines
for series multiplication and division can be used to generate and accumulate the integrand in
(3) as numerical series.

A crude operation count for the total procedure is(N − 8n)2/2 scalar multiplies for each
series multiplication/division. The number of integration points is(N −2(n+ 1)(2n−1))2n if
one invokes no symmetries. However, there is the obvious inversion symmetry that allφ→−φ
leaves the integrand in (3) invariant. The complete permutation symmetry is probably not useful
as the potential(2n)! gain comes at the expense of having to evaluate all distinct(2n + 1)!!
products inG(2n+1) in equation (7). The better route seems to be to use symmetrized versions
of equations (9), (10). These are, for the two lowest nontrivial orders

H(3) ≡ 1
2f12(f23− f13 + f12) H (5) ≡ 1

4f12(f23f14− f13f24 + f12f34)(f45− f35 + 1
2f34)

(51)

and in general each central two-term factor in (10) is replaced by the three-term
1
2(f2m,2m+1f2m−1,2m+2 − f2m−1,2m+1f2m,2m+2 + f2m−1,2mf2m+1,2m+2/m). The use of inversion
plus this pairwise symmetry reduces the number of integration points by 2n+1 and requires
only a marginal increase in the number of series operations. I find about 20 series
multiplication/divisions are required in the innermost loop of the integration routine. Thus
a rough timing estimate is

T ' 20τ((N − 8n)2/2)((N − 2(n + 1)(2n− 1))2n/2n+1) (52)

with τ the time for a scalar multiply. Improvements can be made by the usual trade-off of data
storage in place of repeated function evaluation.

A remaining issue is that of round-off error. The advantage of usings as expansion
variable is that the radius of convergence of the series is unity and so all numerical coefficients
are sensibly normalized. I find that no serious round-off errors develop and the accuracy of the
final series is only one or two digits less than the computer word size. The only place one does
have to be careful is in the generation of the initial series forx(φ) andy(φ). From equation (4)
for y it follows that

dy/ds(1− 2s · cosφ + s2(cos2 φ + 1)− 2s3 · cosφ + s4)

= y(cosφ − s(cos2 φ + 1) + 3s2 · cosφ − 2s3) (53)

and on substitutingy =∑ sngn into (53) one can obtain the recursion relation

(n + 1)gn+1 = (2n + 1) cosφ · gn − n(cos2 φ + 1)gn−1 + (2n− 1) cosφ · gn−2 − (n− 1)gn−3

(54)

which is stable for forward recursion. Appropriate forx(φ) is

x = sy/(1 + (1 + s2 − s · cosφ)y) (55)

which follows directly from (4) and eliminates the need for a second recursion formula.
The series ins for χ(2n+1) are summarized below. The reader can convert to other

representations as desired; I have converted tov = tanh(K) the few terms in the published
series [3, 15] that need to be corrected by the addition ofχ(7). These are, for the totalχ ,
36912183772984768028v48, 221649470925554610572v50, 1329440077424712516884v52

and 7965488065940463679268v54.

χ(1) = (1− s4)1/4/(1− s)2
χ(3) = 4(s/2)8[1, 0, 0, 4, 16, 4, 20, 84, 247, 188, 536, 1524, 4140, 4584, 11164, 27884,

70128, 93456, 217124, 500996, 1190728, 1788648, 4019068, 8857404,
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20337695, 32855320, 72136120, 155198996, 347003020, 588148504,

1272754780, 2692201900, 5902536420, 10366753636, 22160925180,

46307647436, 100154617112, 180464969656, 382047574868,

791824710548, 1693712632332, 3110849108804, 6539936949172,

13467369401316, 28548267779720, 53233613340744, 111268207398460,

227997121825148, 479923398673972, 905331036961540,

1883299812962700, 3845474171869468, 8046864612290488,

15318087259999576, 31744377825521284, 64634781151767236,

134589216372542043, 258119734021734396, 533133709272235624,

1083018464018398996, 2246234877571466748, 4333906525071598248,

8925651535203772188, 18099334772981593516, 37410856536526302308,

72539370174918149828, 149036477928584673980,

301753056841850788236, 621874438456997865688,

1210879527614829677816, 2482595317106536689172,

5020039987360235170644, 10319715684451678215008,

20164132636961510005880, 41265182381709135449804,

83356862902542086879468, 170978340515589313718120] + O(s85)

where everynth term in [ ] is understood to be multiplied by(s/2)n−1. In the same notation,

χ(5) = 16(s/2)24[1, 0, 0, 0, 48, 4, 0, 4, 1463, 228, 28, 248, 36304, 7972, 1864, 9468,

801661, 221532, 74112, 286404, 16438116, 5382792, 2295212, 7530952,

320482495, 119856148, 61188256, 180246140, 6026865364, 2511621784,

1476355096, 4032689592, 110347180596, 50356068440, 33187060312,

85779335560, 1979543921484, 976496522740, 707837755996,

1754683199016, 34949776971561, 18452824614036,

14501021397972, 34798435456904, 609270636967496,

341626213259368, 287796156305644, 673040682652176,

10512702107247313, 6220763534246424, 5567911455434816,

12752092161432520, 179869321769052280, 111744680073378996,

105495627686468404, 237503860512867456, 3056036718790296147,

1984676379219429672, 1964487397269198000, 4359903276200726968,

51618661720552233864] + O(s85)

χ(7) = 64(s/2)48[1, 0, 0, 0, 96, 0, 0, 4, 5231, 4, 0, 436, 213136, 456, 36, 26588, 7232113,

28952, 4408, 1198004, 216135776, 1353328, 298448, 44506752,

5882815986, 52005072, 14783296, 1444017180, 149044674900,

1741004728, 598685156, 42361975404, 3568323690294, 52589908552,

21020411728, 1149599078568, 81610343951508] + O(s85)

χ(9) = 256(s/2)80[1, 0, 0, 0, 160] + O(s88).

As a check of transcription errors, note the sum of all coefficients in each [ ] grouping is
336016104447651492568810 forχ(3), 63655452600073075449 forχ(5), 86603288006141
for χ(7) and 161 forχ(9).
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Appendix B. Series analysis

The contributions to the series coefficients inχ(2n+1)/(1 − s4)1/4 = ∑
K
(2n+1)
N sN from

singularities on the unit circle|s| = 1 exclusive ofs = ±1,±i are given in (15) as1K(3)
N for

n = 1. The corresponding reduction of equations (12), (14) forn = 2 gives

1K
(5)
N = N−12(18

√
5/π2)( 5

2)
10

5∑
m=1

am sin((N + 1)θm)/ sin(θm)

{am, θm} = (4− 4/
√

5)6, 4π/5; 2( 24
5 )

6, arccos(− 1
4);

(9 + 17/
√

5)6, arccos((3−√5)/8); (4 + 4/
√

5)6, 2π/5;
(9− 17/

√
5)6, arccos((3 +

√
5)/8)

(56)

and the latter series contribution is particularly small relative to, say, thes = 1 ferromagnetic
contribution which is O(N)†. The challenge of a series analysis method to verify these
contributions is to eliminate to high precision the uninteresting but dominant terms. I use
below a technique that works well when the location of the singularities is known as is the
case here; the method can be viewed either as a variant of Neville–Aitken extrapolation, series
smoothing, or simply numerical differentiation.

A trivial observation that is the basis of many series analysis methods is that if a series
coefficient ofsN varies as, say,fN ∝ 1/Np, then this contribution can be eliminated by
the differentiation dgN/dN ' gN+1 − gN , gN = NpfN . If gN ∝ (−1)N one would use
insteadgN+1 +gN—an example of series smoothing. In either case the process is equivalent to
multiplying the series

∑
gNs

N by s − s̄ wheres̄ is the location of the singularity. Thus in the
case of a complex pair ats̄± = exp(±iθ) one can multiply by(s − s̄+)(s − s̄−)/s or form the
combinationDθgN = gN+1 − 2 cos(θ)gN + gN−1. It is this process I use below to eliminate
known terms and enhance, relatively, any possible residual singularity contributions.

The dominant contributions to the series coefficientsK(3)
N after subtraction of the

ferromagnetic termF1K(3)
N appear to be∝ (±1)N ln(N)/N and(±i)N/N which, together

with some subdominant terms, are eliminated by the transformations

0gN = (D2
cN

2)2(K
(3)
N − F1K

(3)
N ) DcgN = gN+2− gN−2 (57)

where the composite derivative operatorDc corresponds to fourfold differentiation or,
equivalently, series multiplication by(s − 1)(s + 1)(s − i)(s + i)/s2. Oscillations in0gN
of period three and constant amplitude at largeN corresponding tōs± = exp(±i2π/3) from
the first term of equation (15) are clearly apparent and when these are reduced by forming
D2π/3 0gN = 0gN+1 + 0gN + 0gN−1 the oscillations from the second term̄s± = 1

4 ± i
√ 15

4 are
unambiguous‡. Having thus established the existence of the predicted complexs singularities
I now modify the above procedure to suppress these also so as to improve the chance of finding

† W have shown the ferromagnetic singularity is a double pole, i.e.χ/(1− s4)1/4 ∝ 1/(1− s)2, with corrections
o(1). This means the leadingtwo ferromagnetic contributions to the series coefficients are given byF1K

(3)
N '

0.814462565662504439391217128562722×10−3(N +1) andF1K(5)
N ' 0.797091208314753855633583588577×

10−6(N + 1). The constants above are numerically improved versions of (W.7.13–W.7.14) and combined
with higher-order terms must satisfy the sum rule 1 + 0.814. . . × 10−3 + 0.797. . . × 10−6 + · · · =
23/8 ln(1 +

√
2)7/4C0+ = 1.0008152604402126471194763630472102369375. Also 23/8 ln(1 +

√
2)7/4C0− =

1.0009603287252621894809349551720973205725/12π . These accurate values for the susceptibility amplitudes
C0± have been obtained by integrating the Painlevé equation (W.2.36) by predictor/corrector methods of high orders
P 6 15. I find that if the variableθ in (W.2.36) is first replaced byx = ln(eθ −1), a uniform stepsizeh is appropriate
in the numerical work and yieldsC0± accurate to≈ (2h)p .
‡ Although the amplitudes of the two terms in equation (15) are comparable, the ‘multiplication’ by(s4− 1)4/s8 to
generate0gN reduces the amplitude of the second relative to the first by the factor25

256 to leading order inN .
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Figure B1. Series amplitude3gN/1013 (left) and 3gN/1012 (right) versus orderN from
equations (58). The curves on the upper right, shifted vertically for clarity, are the extra contributions
to 3gN/1012 that would result ifK(3)

N contained the1K(5)
N terms in equation (56) but scaleddown

as indicated. The curves on the lower right are the changes in3gN/1012 that would result from
modifications of existing contributions: for the lowest curve increasingK

(3)
125 by one part in 1022;

for the two overlapping curves decreasing the amplitudes in1K
(3)
N in equation (15) by one part in

106.

yet other|s| = 1 singularities. Specifically I subtract out the1K(3)
N contribution from (15)

and define the transformations

1gN = N5D5
arccos(1/4)D

5
2π/3D

4
cN

4D5
cN

5(K
(3)
N − F1K

(3)
N −1K(3)

N )

3gN = D2π/3 2gN 2gN = N(1gN+1− 1gN−1).
(58)

The choice of operations in (58) is such that if all series coefficientsK
(3)
N − F1K

(3)
N −1K(3)

N are
of the form(±1)N ln(N)/Np, (±i)N/Np, p > 1 and exp(±iθ)/Np, p > 5 then3gN = O(1)
asN →∞. This assumption may not be strictly correct (e.g. there could be extra ln(N) factors
in the series coefficients) but that does not affect the qualitative argument that, because the
cumulativeN product in (58) reaches to a finalN15, 3gN is very sensitive to small contributions
in the initialK(3)

N . Significant changes are observed in3gN for N & 100 for changes in the
amplitudes in1K(3)

N in equation (15) as small as one part in 106; this confirms precisely
equation (14) for the leading singular behaviour ofχ

(3)
k` .

A comparison of3gN with contributions of the form of those in equation (56) for1K(5)
N

with variously scaled amplitudes is shown in figure B1. There is no evidence thatχ(3)

contains any of the complexs, |s| = 1, singularities inχ(5) from equation (56). Even if these
singularities were present inχ(3), four of the five pairs could not possibly have sufficiently
large amplitude to cancel those inχ(5). The argument for the pair at|θ | = 2π/5 is not as
convincing because this angle is too close to the singularity angle|θ | = arccos( 1

4) ' 75.5◦ in
χ(3). Finally, to complete the cancellation argument I have checked thatχ(5) does not have
singularities that might cancel those inχ(3).

To deduce the nature of the singularities inχ(5) I have calculated

1hN = N3(D3
cN

3)3(0hN+1 + 0hN + 0hN−1 + 0hN−2) 0hN = K(5)
N − F1K

(5)
N (59)
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to eliminate terms such as ln2(N)/N in analogy with equation (57). The sequence1hN , as
the maximum availableN = 127 is approached, is oscillatory with approximate period 5
and amplitude 5× 109. On the basis of this result one can conclude that any contribution to
0hN of the form of the two terms in1K(3)

N must have amplitudes smaller than those given in
equation (15) by factors 1010 and 108, respectively.

Furthermore, ifK(5)
N has the structure indicated in equation (56), then the sequence1hN

should asymptotically approach

1hN '
5∑

m=1

bm cos((N + 1/2)θm) {bm/109} ' 2.52, 0.450, 0.0384, 6.60, 0.485. (60)

The observations are reasonably consistent with the first and fourth terms above although it is
also clear that one has not yet reached the asymptotic limitN →∞ at the availableN 6 127.
Subtracting the corresponding two1K(5)

N terms in equation (56) from0hN in (59) and then
reducing the residuals further by the transformation to

2hN = ((N + 3) 1hN+3− (N − 2) 1hN−2)/N (61)

should relatively enhance the remaining terms. The behaviour of2hN in equation (61) can
plausibly be interpreted in terms of the second and fifth terms in (60) but this result is by no
means definitive and the contribution from the third term is too small to be demonstrated at
all. On the other hand the numerical analysis above is entirely consistent with the assumption
that the only singularities inχ(2n+1) on the circle|s| = 1 are those that have been described
analytically in this paper.
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